При решении задач используйте постоянные величины из данного приложения

1.Плотности некоторых твердых тел, кг/м³

Золото	19 300	Гранит	2600
Свинец	11 300	Стекло оконное	2500
Серебро	10 500	Фарфор, бетон	2300
Медь	8900	Кирпич	1800
Латунь	8500	Песок	1500
Сталь, железо	7800	Янтарь	1100
Олово	7300	Парафин, лед	900
Цинк	7100	Дуб, береза	700
Чугун	7000	Ель	600
Корунд	4000	Сосна	400
Алюминий, мрамор	2700	Пробка	240

2.Плотности некоторых жидкостей, кг/м³

Ртуть	13 600	Подсолнечное масло	930
Серная кислота	1800	Машинное масло	900
Растворитель	1595	Керосин,спирт,нефть	800
Мед	1350	Ацетон	790
Морская вода,молоко	1030	Бензин, эфир	710
Пресная вода	1000	Янтарь	1100

З.Плотности некоторых газов, кг/м³

Воздух	1,29	Гелий	0,18
Кислород	1,43	Светильный газ	0,40
Водород	0,09	Хлор	3,21

4. Ускорение свободного падения на планетах Солнечной системы. Н/кг или м/с²

Меркурий	3,7	Юпитер	24
Венера	8,8	Сатурн	9
Земля / Луна	9,8/1,7	Уран	8,87
Марс	3,8	Нептун	11,15

5. Атмосферное давление

Нормальное атмосферное давление – 760 мм рт.ст.

1 мм рт.ст. = 133,3 Па

760 мм рт.ст. -101300 Па – 10^5 Па – 1 атм.

Атм. давление через каждые 12 м изменяется на 1 мм рт.ст.

(ответы в конце списка) Первый уровень

Работа

- **1.** Вычислить работу, произведенную силой 0,02 кH, если путь, пройденный телом по направлению действия этой силы, равен 10 м.
- **2.** Определить работу, совершенную при равномерном подъеме тела весом 40 H на высоту 120 см.
- **3.** Какую работу надо совершить для того, чтобы поднять чугунную гирю весом 20 H на высоту 0,9 м?
- **4.** Ящик под действием силы 50 H перемещается на расстояние 14 дм. Определить совершенную при этом работу.
- **5.** Работа двигателя автомобиля, прошедшего с неизменной скоростью путь 2 км, равна 50 кДж. Определить силу трения.
- **6.** Мальчик поднимает груз на высоту 80 см, совершая при этом работу 32 Дж. С какой силой он действует на груз?
- **7.** Трактор тянет прицеп, совершая работу 300000 Дж на пути 200 м. Какую силу тяги развивает трактор?
- 8. На каком пути сила 7,8 Н совершает работу 35,1 Дж?
- **9.** Буксирный катер тянет баржу силой 4400 Н. Какой путь он прошел, если была совершена работа 660 кДж?
- **10.** Рабочий перекатил вагонетку, прилагая силу 115 H, совершив при этом работу 6900 Дж. Вычислить путь, пройденный вагонеткой.

Мощность

- **11.** При подъеме санок на гору за 16 с совершена работа, равная 800 Дж. Какая мощность была развита при подъеме санок?
- **12.** Электродвигатель за 10 мин совершил работу 2400 кДж. Чему равна мощность электродвигателя?
- **13.** Подъемник за 20 с совершил работу 30 кДж по перемещению груза у строящегося дома. Определить мощность подъемника.
- **14.** Трактор при пахоте за 0,5 ч совершил работу 13500000 Дж. Вычислить мощность трактора на крюке.
- **15.** Мощность двигателя швейной машины 40 Вт. Какую работу он совершает за 5 мин?

- **16.** Самосвал при перевозке груза развивает мощность 30 кВт. Какая работа совершается им в течение 45 мин?
- **17.** Какую работу может выполнить двигатель велосипеда мощностью 600 Вт за 30 с?
- **18.**Мощность двигателя водяного насоса 0,5 кВт. За какое время он выкачивает воду из емкости, если необходимо совершить работу 300000 Дж?
- **19.** Определить время, в течение которого велосипедист совершил работу 560 Дж, развивая при этом мощность 80 Вт.
- **20.** Стогометатель поднимает копну сена, совершив работу 6 кДж. Двигатель трактора, приводящий в движение стогометатель, развивает мощность 1000 Вт. Найти время подъема копны.

Рычаг

- **21.** Левое плечо уравновешенного рычага имеет длину 40 см, правое 50 см. К нему подвешен груз весом 20 Н. Какой груз висит слева?
- **22.** Плечи рычага равны 30 и 12 см. К большему плечу прикреплен груз весом 8H. Определить вес второго груза, если рычаг находится в равновесии.
- **23**. Длина меньшего плеча рычага 5 см, большего 30 см. На меньшее плечо действует сила 12 Н. Какую силу надо приложить к большему плечу, чтобы уравновесить рычаг? Сделать рисунок. Весом рычага пренебречь.
- **24.** При равновесии невесомого рычага на его меньшее плечо действует сила 300 H, на большее 20 H. Длина меньшего плеча 5 см. Определить длину большего плеча.
- **25.** Приподнимая ящик рычагом, рабочий прилагает силу 400 Н. Плечо этой силы 80 см. Какова длина второго плеча рычага, если вес ящика 2 кН?
- **26.** Правое плечо уравновешенного невесомого рычага имеет длину 25 см. К нему подвешена гиря весом 6 Н. Найти длину левого плеча, если к нему подвешен груз 10 Н?
- **27.** На концах невесомого рычага действуют силы 40 и 240 Н. Расстояние от оси рычага до меньшей силы 6 см. Определить длину большего плеча, если рычаг в равновесии.
- **28.** Невесомый рычаг находится в равновесии. К левому и правому плечам подвешены грузы, имеющие соответственно вес 8 и 2,5 Н. Какую длину имеет левое плечо, если правое равно 24 см?
- **29.** Для поднятия ящика рабочий использовал рычаг. Плечо его силы было 75 см. Какой выигрыш в силе он получил, если второе плечо равно 25 см?

30. Находится λ и в равновесии невесомый рычаг, ес λ и плечи его равны 7,2 и 6 см, а си λ приложенные к плечам, соответственно равны 0,5 и 0,6 H?

Блоки

- **31.** Груз какого наибольшего веса может приподнять мальчик, вес которого 450 H, пользуясь одним подвижным и одним неподвижным блоком?
- **32.** С помощью подвижного невесомого блока поднимают груз весом 350 H. Какое усилие прилагают к свободному концу веревки? Трение не учитывать.
- **33.** Сможет ли рабочий при помощи неподвижного блока поднять груз весом 1000 H? Вес рабочего 750 H.
- **34.** С помощью подвижного блока подняли груз. На какую высоту был поднят груз, если свободный конец шнура опустился на 4,2 м?
- **35.** С помощью одного неподвижного и одного подвижного блоков подняли ведро раствора бетона на высоту 2,5 м. На какую длину при этом был вытянут свободный конец веревки?
- **36.** С помощью подвижного блока первый рабочий поднял груз, вытянув свободный конец веревки на 8 м. Второй рабочий поднял груз на высоту 3,5 м. Кто из них поднял груз на большую высоту?
- **37.** Какой длины канат наматывается на барабан лебедки башенного крана, если подвижный блок с грузом поднимается на 68 м?
- **38.** С какой скоростью движется канат, наматываемый на барабан лебедки башенного крана, если подвижный блок с грузом движется со скоростью 1,16 m/c?
- **39.** Вес подвижного блока с подвешенным к нему грузом равен 6,2 Н. Чему будет равно показание динамометра при равномерном подъеме груза?
- **40.** С помощью подвижного блока подняли груз весом 6 Н, прилагая к свободному концу веревки усилие 3,6 Н. Какой выигрыш в силе дал этот блок?

КПД

- **41.** Механизм лифта имеет КПД 90 %. Его двигатель совершил 580 кДж работы. Вычислить полезную работу двигателя.
- **42.** Двигатель насоса совершил 800 кДж работы. Вычислить полезную работу двигателя, если КПД насоса 85 %.
- **43.** Перемещая груз по наклонной плоскости, совершили работу 500 Дж. Найти КПД наклонной плоскости, если полезная работа равна 400 Дж.

- **44.** КПД рычага 98 %. Определить полную совершенную работу, если полезная работа составила 470,4 Дж.
- **45.** Первый блок имеет КПД 80 %, а при использовании второго блока была совершена работа 720 Дж, из них полезная -600 Дж. Какой блок имеет больший КПД?
- **46.** С помощью неподвижного блока равномерно поднят груз, сила тяжести которого 225 Н. Для поднятия груза на высоту 3 м к концу шнура была приложена сила 250 Н. Каков КПД блока?
- **47.** КПД неподвижного блока 92 %. К концу веревки прилагают силу 170 H. Можно ли поднять этой силой груз весом 159 H на высоту 2 м?
- **48.** Какую силу прилагают к концу нити при подъеме гири весом 6 H с помощью неподвижного блока, КПД которого 80 %?
- **49.** Определить потенциальную энергию тела массой 1,2 кг, поднятого над землей на 5 м.
- **50.** Какой потенциальной энергией относительно Меркурия обладало бы тело массой 10 кг на высоте 1 км?

Второй уровень

Работа

- **51.** Лошадь везет телегу с постоянной скоростью 0,8 м/с, прилагая усилие 400 Н. Какая работа совершается при этом за 1 ч? Силу, приложенную лошадью к телеге, считать направленной вдоль перемещения телеги.
- **52.** Вычислить работу, совершенную при подъеме груза массой 150 кг на 40 см.
- **53.** Гиря массой 200 г была поднята на высоту 1,5 м. Чему равна совершенная работа?
- **54.** Давление воды в нагнетательном насосе 1200 кПа. Определить работу, совершенную при перемещении поршня площадью 400 см 2 на расстояние 50 см.
- **55.** При равномерном подъеме из шахты нагруженной углем бадьи массой 10,5 т произведена работа 6200 кДж. Какова глубина шахты?
- **56.** При подъеме балки на 5 м совершена работа 5000 Дж. Найти массу балки.

Мощность

57. Какую среднюю мощность развивает человек, поднимающий ведро воды весом 120 H из колодца глубиной 20 м за 15 с?

- **58.** Мощность двигателя подъемной машины равна 4 кВт. Груз какого веса она может поднять на высоту 15 м в течение 2 мин?
- **59.** Двигатель подъемного крана имеет мощность 1,5 кВт. Удовлетворит ли строителей время подъема бетонной плиты весом 100 кН? Высота подъема плиты равна 39,6 м.
- **60.** Мощность двигателя лифта 2 кВт. На какую высоту он может поднять груз весом 8000 H за 1 мин 40 с?

Рычаг

- **61.** На концах рычага действуют силы 40 и 280 Н. Расстояние от оси рычага до меньшей силы 7 см. Определить длину невесомого уравновешенного рычага.
- **62.** При помощи кусачек перекусывают гвоздь. Расстояние от оси вращения кусачек до гвоздя 2 см, а до точки приложения силы руки 16 см. Рука сжимает кусачки с силой 200 Н. Определить силу, действующую на гвоздь.
- **63.** К рычагу подвешены две гири. Плечи сил, с которыми гири тянут за концы рычага, равны 25 и 70 см и на длинном плече рычага висит гиря в 25 Н. Найти общий вес гирь.
- **64.** Более легкий груз на невесомом уравновешенном рычаге имеет вес 12 H. Определить вес второго груза, если плечи равны 10 и 25 см.
- **65.**Большее плечо рычага имеет длину 16,8 см. Рычаг уравновешен грузами общим весом 7,95 H. Найти длину второго плеча, если вес более легкого груза равен 3,25 H.

Блоки

- **66.** Можно ли с помощью трубоукладчика поднимать трубу нефтепровода весом 18 кH, используя подвижный блок и трос, который может выдержать усилие до 30 кH? Необходимо иметь в виду, что трос должен обладать трехкратным запасом прочности.
- **67.** Груз какого веса можно поднять с помощью подвижного блока, вес которого 30 H, прилагая к свободному концу веревки усилие 0,2 кH? Трение не учитывать.
- **68.** Вес подвижного блока равен 20 Н. Подвешенный к нему груз весит 160 Н. Какую силу надо приложить к свободному концу веревки при равномерном подъеме груза?
- **69.** С помощью подвижного блока груз поднят на высоту 15 м. Какая работа была совершена, если веревку тянули с силой 200 H?

70. Чтобы поднять груз с помощью подвижного блока, приложено усилие в 0,5 кН. Какова высота подъема груза, если при этом была совершена работа 1000 Дж?

КПД

- **71.** Двигатель лебедки, совершив работу 400 кДж, протянул завязший грузовик на 4,5 м при натяжении троса с силой 80 кН. Определить КПД лебедки.
- **72.** При помощи неподвижного блока подняли ящик гвоздей весом 200 H на высоту 8 м, действуя за веревку силой 205 H. Чему равен КПД установки?
- **73.** КПД насоса 80 %. Его двигатель совершил работу в 3,7 МДж. Вычислить полезную работу двигателя.
- **74.** К короткому плечу рычага подвешен груз весом 1400 Н. При равномерном поднятии груза на 0,11 м была совершена работа 192,5 Дж. Каков КПД рычага?
- **75.** Для подъема стройматериалов на некоторую высоту необходимо совершить работу 25,2 МДж. Для этого использовали транспортер мощностью двигателя 5 кВт в течение 2 ч. Определить КПД транспортера.

Третий уровень

Работа

- **76.** Каждую секунду насос подает 20 л воды на высоту 10 м. Какая работа совершается за 1 ч?
- **77.** Какая работа совершается при подъеме гранитной плиты объемом 2 м^3 на высоту 12 м? Чему будет равна работа, если эту плиту поднимать на ту же высоту в воде?
- **78.** Экскаватор выбрасывает за один прием 14 м³ грунта, поднимая его на высоту 20 м. Масса ковша без грунта 2 т. Определить работу, которую выполняет двигатель экскаватора при однократном подъеме грунта и ковша. Плотность грунта принять равной 1500 кг/м³.
- **79.** Водонапорная башня вмещает 64 м³ воды. При полном заполнении ее водой насос совершил работу 32 МДж. На какой высоте над уровнем земли находится башня, если вода подается насосом из скважины глубиной 41 м?
- **80.** Насосы поднимают за 1 с воду объемом 45 м³ в резервуар, находящийся на высоте 40 м. Определить продолжительность работы насосов, если ими была совершена работа 5400 МДж.

Мощность

- **81.** Транспортер поднимает за один час гравий объемом 240 м³ на высоту 6 м. Плотность гравия 1700 кг/м³. Найти мощность двигателя.
- **82.** Определить среднюю мощность насоса, который подаст бензин объемом 3 ${\rm M}^3$ на высоту 4 ${\rm M}$ за 5 ${\rm M}$ ин.
- **83.** Сколько времени должен работать насос мощностью 50 кВт, чтобы из шахты глубиной 150 м откачать воду объемом 200 м³?
- **84.** Расход воды в реке составляет 500 м³/с. Какой мощностью обладает поток воды, если уровень воды поднят плотиной на 10 м?
- **85.** Подъемный кран поднял железобетонную плиту на высоту 8 м за 20 с. Мощность двигателя 5600 Вт, плотность железобетона 2800 кг/м³. Каков объем этой плиты?

Рычаг

- **86.** Длина невесомого рычага 2 м. На его концах уравновешены грузы 18 и 162 т. Найти плечи рычага.
- **87.** На концах рычага действуют силы 2 и 18 Н. Длина рычага равна 1 м. Где находится точка опоры, если рычаг в равновесии? Весом рычага пренебречь.
- **88.** Горизонтальный однородный стержень находится в равновесии. Определить его вес, если точка опоры находится на 1/5 длины стержня и к самому концу стержня подвешен груз весом 120 H.
- **89.** Однородный стержень, на одном конце которого подвешен груз, будет находиться в равновесии в горизонтальном положении, если точка опоры находится на 1/8 длины стержня от груза. Чему равен вес груза, если вес стержня равен 50 H?
- **90.** К рычагу подвешены две гири общим весом 50 Н. Плечи сил, с которыми гири тянут за концы рычага, равны 30 и 70 см. Найти вес каждой из гирь.

Блоки

- **91.** При помощи подвижного блока поднимают груз, прилагая силу 100 Н. Определить силу трения, если вес блока равен 20 Н, вес груза 165 Н. Какова будет полезная и затраченная работа и КПД установки, если высота подъема груза равна 4 м?
- **92.** Рабочий поднимает груз, вес которого 480 H с помощью неподвижного блока. Вычислить давление, производимое рабочим на опору, если его вес 720 H, а площадь ступней составляет 320 см². Трением и весом блока пренебречь.

- **93.** При подъеме груза на высоту 2 м с помощью подвижного блока совершена работа 1800 Дж. Какова масса поднятого груза, если вес блока равен 90 H, а сила трения 10H?
- **94.** Поднимая при помощи подвижного блока ведро с песком весом 200 H на высоту 5 м, производят работу 1020 Дж. Определить вес ведра, если его вместимость 12 л.
- **95.** При помощи подвижного блока поднимают ведро с водой, прилагая силу 105 Н. Чему равен вес блока, если сила трения равна 10 Н, а общая масса груза 18 кг?

КПД

- **96.** При подъеме груза по наклонной плоскости на высоту 3 м совершается работа 25 кДж. Определить массу груза, если КПД наклонной плоскости 60 %.
- **97.** Электродвигатель подъемного крана мощностью 5 кВт поднимает груз массой 5 т на высоту 10 м. Определить время подъема груза. КПД установки $80\,\%$.
- **98.** Для закачивания воды в цистерну, находящуюся на высоте 12 м, поставлен насос. Мощность двигателя равна 480 Вт, КПД 75 %. Какой объем воды он сможет подавать в цистерну за 1 мин?
- **99.**Вычислить КПД рычага, с помощью которого груз массой 245 кг равномерно подняли на высоту 6 см, при этом к длинному плечу рычага была приложена сила 500 H, а точка приложения этой силы опустилась на 0,3 м.
- 100. Каков КПД системы из двух блоков, если КПД каждого из них равен 0,8?

OTBETЫ

1	2	3	4	5	6	7	8	9	10
200 Дж	48 Дж	18 Дж	70 Дж	25 H	40 H	3 кН	4,5 м	150 M	60 м
11	12	13	14	15	16	17	18	19	20
50 Вт	4 кВт	1,5 кВт	7,5 кВт	12 кДж	81 MH	18 кДж	10 мин	7 c	6 c
21	22	23	24	25	26	27	28	29	30
25 H	20 H	2 H	75 см	16 см	15 см	36 см	76,8 см	3 раза	да
31	32	33	34	35	36	37	38	39	40
900 H	175 H	нет	2,1 M	5 M	первый	136 м	2,32м/с	3,1 H	≈ 1,6
41	42	43	44	45	46	47	48	49	50
52 кДж	680кДж	80%	480 Дж	83%	90 %	170 H	7,5 H	60 Дж	37кДж
51	52	53	54	55	56	57	58	59	60
1152кДж	600Дж	3 Дж	24 кДж	≈ 60 M	1 100 кг	160 Вт	32 кН	2640 c	25 M
61	62	63	64	65	66	67	68	69	70
1 см	1600 H	3,2 кг	30 H	4,7 H	можно	370 H	90 H	3 кДж	0,25 M
									•
71	72	73	74	75	76	77	78	79	80
90 %	≈ 98%	2,96МДж	80 %	7 %	7,2МДж	384кДж	4,2МДж	9 м	50 мин
•			•		•	•			•
81	82	83	84	85	86	87	88	89	90
6,8 кВт	2840 Вт	100мин	50МДж	0,5 m ³	1,8м;0,2м	0,9м;0,1м	80H	150H	15H;35H
•	•	•	•				•		•
91	92	93	94	95	96	97	98	99	100
82,5%	≈23кПа	79 кг	4 H	20 H	500 кг	125 c	180 л	98 %	0,64